Given the position vectors of points \(A\) and \(B\) as \( \mathbf{A} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k} \) and \( \mathbf{B} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k} \), and \(C\) divides \(AB\) in the ratio 3:2. If \( \mathbf{D} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k} \) is the position vector of point \(D\), find the unit vector in the direction of \( \mathbf{CD} \):
Show Hint
When solving vector problems, make sure to use the section formula to find the position of points dividing a segment and then apply the vector operations correctly to find the direction and magnitude of the resulting vectors.
We are given that the position vectors of points \(A\), \(B\), and \(D\) are \( \mathbf{A} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k} \), \( \mathbf{B} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k} \), and \( \mathbf{D} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k} \), respectively. We are also told that point \(C\) divides \(AB\) in the ratio \(3:2\).
Step 1: Find the position vector of \(C\) using the section formula.
\[
\mathbf{C} = \frac{2\mathbf{A} + 3\mathbf{B}}{5} = \frac{2(2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) + 3(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})}{5}
\]
\[
\mathbf{C} = \frac{7\mathbf{i} - 7\mathbf{k}}{5} = \frac{7}{5}\mathbf{i} - \frac{7}{5}\mathbf{k}
\]
Step 2: Find the vector \( \mathbf{CD} \).
\[
\mathbf{CD} = \mathbf{D} - \mathbf{C} = (3\mathbf{i} - \mathbf{j} + 2\mathbf{k}) - \left(\frac{7}{5}\mathbf{i} - \frac{7}{5}\mathbf{k}\right)
\]
\[
\mathbf{CD} = \frac{8}{5}\mathbf{i} - \mathbf{j} + \frac{17}{5}\mathbf{k}
\]
Step 3: Find the unit vector in the direction of \( \mathbf{CD} \).
The magnitude of \( \mathbf{CD} \) is:
\[
|\mathbf{CD}| = \sqrt{\left(\frac{8}{5}\right)^2 + (-1)^2 + \left(\frac{17}{5}\right)^2} = \frac{3\sqrt{42}}{5}
\]
The unit vector in the direction of \( \mathbf{CD} \) is:
\[
\hat{\mathbf{CD}} = \frac{1}{\sqrt{42}}(8\mathbf{i} - 5\mathbf{j} + 17\mathbf{k})
\]
\vspace{0.5cm}