We are given that the position vectors of points \(A\), \(B\), and \(D\) are \( \mathbf{A} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k} \), \( \mathbf{B} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k} \), and \( \mathbf{D} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k} \), respectively. We are also told that point \(C\) divides \(AB\) in the ratio \(3:2\).
Step 1: Find the position vector of \(C\) using the section formula.
\[
\mathbf{C} = \frac{2\mathbf{A} + 3\mathbf{B}}{5} = \frac{2(2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) + 3(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})}{5}
\]
\[
\mathbf{C} = \frac{7\mathbf{i} - 7\mathbf{k}}{5} = \frac{7}{5}\mathbf{i} - \frac{7}{5}\mathbf{k}
\]
Step 2: Find the vector \( \mathbf{CD} \).
\[
\mathbf{CD} = \mathbf{D} - \mathbf{C} = (3\mathbf{i} - \mathbf{j} + 2\mathbf{k}) - \left(\frac{7}{5}\mathbf{i} - \frac{7}{5}\mathbf{k}\right)
\]
\[
\mathbf{CD} = \frac{8}{5}\mathbf{i} - \mathbf{j} + \frac{17}{5}\mathbf{k}
\]
Step 3: Find the unit vector in the direction of \( \mathbf{CD} \).
The magnitude of \( \mathbf{CD} \) is:
\[
|\mathbf{CD}| = \sqrt{\left(\frac{8}{5}\right)^2 + (-1)^2 + \left(\frac{17}{5}\right)^2} = \frac{3\sqrt{42}}{5}
\]
The unit vector in the direction of \( \mathbf{CD} \) is:
\[
\hat{\mathbf{CD}} = \frac{1}{\sqrt{42}}(8\mathbf{i} - 5\mathbf{j} + 17\mathbf{k})
\]
\vspace{0.5cm}