We are given: \[ \frac{A}{x-a} + \frac{Bx + C}{x^2 + b^2} = \frac{1}{(x-a)(x^2 + b^2)} \]
Step 1: Take LCM on the Left-Hand Side Rewriting the left-hand side with a common denominator: \[ \frac{A(x^2 + b^2) + (Bx + C)(x-a)}{(x-a)(x^2 + b^2)} = \frac{1}{(x-a)(x^2 + b^2)} \] Since the denominators are equal, equating the numerators: \[ A(x^2 + b^2) + (Bx + C)(x - a) = 1. \]
Step 2: Expand the Equation Expanding both terms: \[ Ax^2 + A b^2 + Bx^2 - a Bx + Cx - aC = 1. \] \[ (A + B)x^2 + (-aB + C)x + (A b^2 - aC) = 1. \]
Step 3: Compare Coefficients Since the right-hand side is just \( 1 \), we equate coefficients: 1. For \( x^2 \): \( A + B = 0 \Rightarrow B = -A \). 2. For \( x \): \( -aB + C = 0 \Rightarrow C = aB \). 3. For the constant term: \( A b^2 - aC = 1 \).
Step 4: Solve for \( C \) Substituting \( B = -A \) into \( C = aB \): \[ C = a(-A) = -aA. \] From the constant term equation: \[ A b^2 - aC = 1. \] Substituting \( C = -aA \): \[ A b^2 - a(-aA) = 1. \] \[ A b^2 + a^2 A = 1. \] \[ A(a^2 + b^2) = 1. \] \[ A = \frac{1}{a^2 + b^2}. \]
Step 5: Find \( C \) \[ C = -aA = -a \times \frac{1}{a^2 + b^2} = \frac{-a}{a^2 + b^2}. \] Thus, the correct answer is: \[ \boxed{\frac{-a}{a^2 + b^2}}. \]
Evaluate the integral: \[ \int \frac{2x^2 - 3}{(x^2 - 4)(x^2 + 1)} \,dx = A \tan^{-1} x + B \log(x - 2) + C \log(x + 2) \] Given that, \[ 64A + 7B - 5C = ? \]