
The stopping potential (\(V_0\)) is related to frequency (\(\nu\)) by the equation:
\[ eV_0 = h\nu - \phi \implies V_0 = \frac{h}{e}\nu - \frac{\phi}{e} \]
The slope of the graph gives \(\frac{h}{e}\), confirming Statement-I. However, \(M_2\) has a higher work function, meaning that for the same incident frequency, the kinetic energy of emitted photoelectrons will be lower. Therefore, Statement-II is incorrect.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 