
The stopping potential (\(V_0\)) is related to frequency (\(\nu\)) by the equation:
\[ eV_0 = h\nu - \phi \implies V_0 = \frac{h}{e}\nu - \frac{\phi}{e} \]
The slope of the graph gives \(\frac{h}{e}\), confirming Statement-I. However, \(M_2\) has a higher work function, meaning that for the same incident frequency, the kinetic energy of emitted photoelectrons will be lower. Therefore, Statement-II is incorrect.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
