Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Time period of a simple pendulum is longer at the top of a mountain than that at the base of the mountain.
Reason (R): Time period of a simple pendulum decreases with increasing value of acceleration due to gravity and vice-versa. In the light of the above statements.
choose the most appropriate answer from the options given below:
To solve the problem, let's analyze the given statements:
The formula for the time period (T) of a simple pendulum is:
T = 2π√(L/g)
where L is the length of the pendulum and g is the acceleration due to gravity. From this formula, we see that the time period is inversely related to the square root of g. As the altitude increases, like at the top of a mountain, the value of g decreases slightly because of the increase in distance from the center of the Earth. This leads to a longer time period (T) at the mountain top compared to the base. Thus, Assertion (A) is true.
The Reason (R) correctly states that the time period decreases with an increase in g, which is mathematically accurate. However, while this reason is true, it does not specifically explain why the time period is longer at a mountain top. This is due to the decrease in g at higher altitudes, which is only indirectly related to the reason given.
Therefore, the correct answer is: Both (A) and (R) are true but (R) is not the correct explanation of (A).
Using a variable frequency ac voltage source the maximum current measured in the given LCR circuit is 50 mA for V = 5 sin (100t) The values of L and R are shown in the figure. The capacitance of the capacitor (C) used is_______ µF.

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
