Let \( D, E, F \) be the feet of perpendiculars from a point \( P \) inside the equilateral triangle \( \triangle ABC \) to the sides \( BC, CA, AB \), respectively.
Let: \[ PD + PE + PF = s \]
Using perpendiculars: \[ \text{Area} = \frac{1}{2} \cdot AB \cdot PE + \frac{1}{2} \cdot BC \cdot PD + \frac{1}{2} \cdot AC \cdot PF \] Since \( AB = BC = AC \), we write: \[ \text{Area} = \frac{1}{2} \cdot AB \cdot (PE + PD + PF) = \frac{1}{2} \cdot AB \cdot s \tag{1} \]
\[ \text{Area} = \frac{\sqrt{3}}{4} \cdot AB^2 \] Equating this with equation (1): \[ \frac{\sqrt{3}}{4} AB^2 = \frac{1}{2} AB \cdot s \] Divide both sides by \( AB \): \[ \frac{\sqrt{3}}{4} AB = \frac{1}{2} s \Rightarrow AB = \frac{2s}{\sqrt{3}} \]
\[ \text{Area} = \frac{1}{2} \cdot \frac{2s}{\sqrt{3}} \cdot s = \frac{s^2}{\sqrt{3}} \]
✅ The area of the triangle in terms of the sum \( s \) of the perpendiculars is: \[ \boxed{\frac{s^2}{\sqrt{3}}} \] So, the correct option is: (B)
From any interior point in an equilateral triangle, if we draw perpendiculars to the three sides, the **sum of the lengths of the perpendiculars is equal to the altitude** of the triangle.
Let the side of the equilateral triangle be \( a \), and the altitude be: \[ s = \frac{\sqrt{3}}{2}a \Rightarrow a = \frac{2s}{\sqrt{3}} \]
The standard formula for the area of an equilateral triangle is: \[ \text{Area} = \frac{\sqrt{3}}{4} a^2 \] Substituting \( a = \frac{2s}{\sqrt{3}} \): \[ \text{Area} = \frac{\sqrt{3}}{4} \left( \frac{2s}{\sqrt{3}} \right)^2 = \frac{\sqrt{3}}{4} \cdot \frac{4s^2}{3} = \frac{s^2}{\sqrt{3}} \]
✅ The area of the triangle in terms of the sum \( s \) of the perpendiculars is: \[ \boxed{\frac{s^2}{\sqrt{3}}} \] (Option B)
ABCD is a trapezoid where BC is parallel to AD and perpendicular to AB . Kindly note that BC<AD . P is a point on AD such that CPD is an equilateral triangle. Q is a point on BC such that AQ is parallel to PC . If the area of the triangle CPD is 4√3. Find the area of the triangle ABQ.
When $10^{100}$ is divided by 7, the remainder is ?