Step 1: Define variables.
Let:
\( s = \text{number of Science students}, \quad a = \text{number of Arts students}, \quad c = \text{number of Commerce students}.
Total students:
\( s + a + c = 1500 \). (1)
Step 2: Use the fee information.
Fees per student:
Science = 1100, Arts = 1000, Commerce = 800.
Total fee collected:
\( 1100s + 1000a + 800c = 1550000 \).
Divide the whole equation by 100 to simplify:
\( 11s + 10a + 8c = 15500 \). (2)
Step 3: Eliminate \( c \).
From (1):
\( c = 1500 - (s + a) \).
Substitute into (2):
\( 11s + 10a + 8(1500 - s - a) = 15500 \)
\( 11s + 10a + 12000 - 8s - 8a = 15500 \)
\( (11s - 8s) + (10a - 8a) + 12000 = 15500 \)
\( 3s + 2a = 3500 \). (3)
Step 4: Express \( a \) in terms of \( s \). From (3):
\( 2a = 3500 - 3s \Rightarrow a = \frac{3500 - 3s}{2} = 1750 - 1.5s \).
Step 5: Apply the condition \( s \le a \).
Given that the number of science students is not more than the number of arts students:
\( s \le a \).
Substitute \( a = 1750 - 1.5s \):
\( s \le 1750 - 1.5s \)
\( s + 1.5s \le 1750 \)
\( 2.5s \le 1750 \)
\( s \le \frac{1750}{2.5} = 700 \).
So, the maximum possible value of \( s \) is \( 700 \), if it is feasible. Step 6: Check feasibility for \( s = 700 \).
\( a = 1750 - 1.5 \cdot 700 = 1750 - 1050 = 700 \),
\( c = 1500 - (s + a) = 1500 - (700 + 700) = 100 \).
All are non-negative integers, and \( s \le a \) holds (700 = 700). So this distribution is valid. Hence, the maximum possible number of science students is \( \boxed{700} \).