Question:

Let \(ΔABC\) be an isosceles triangle such that \(AB\) and \(AC\) are of equal length. \(AD\) is the altitude from \(A\) on \(BC\) and \(BE\) is the altitude from \(B\) on \(AC\) . If \(AD\) and \(BE\) intersect at \(O\) such that \(∠AOB =105\degree\) , then \(\frac{AD}{BE}\) equals

Updated On: Jul 21, 2025
  • sin15º
  • cos15º
  • 2cos15º
  • 2sin15º
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let ΔABC be an isosceles triangle such that AB and AC are of equal length

Given, \( AB = AC \) 
\( \Rightarrow \angle C = \angle B \) …….. (1)
\( AD \) and \( BE \) are altitudes \( \Rightarrow \) they make 90° with the sides.
\( \angle AOB = \angle EOD = 105^\circ \) (Vertically Opposite Angles)
In quadrilateral \( DOEC \):
\( \angle C = 360^\circ - 105^\circ - 90^\circ - 90^\circ = 75^\circ \)
From equation (1):
\( \Rightarrow \angle B = 75^\circ \)

Area of triangle:
\( AD \cdot BC = BE \cdot AC \)
\( \Rightarrow \frac{AD}{BE} = \frac{AC}{BC} \)
\( \Rightarrow \frac{AD}{BE} = \frac{2R \sin B}{2R \sin A} \)
\( \Rightarrow \frac{AD}{BE} = \frac{\sin 75^\circ}{\sin 30^\circ} \)
\( \Rightarrow \frac{AD}{BE} = 2 \sin 75^\circ \)
\( \Rightarrow \frac{AD}{BE} = 2 \cos 15^\circ \)

Correct option: (C) \( 2 \cos 15^\circ \)

Was this answer helpful?
0
0

Top Questions on Triangles, Circles & Quadrilaterals

View More Questions