
Given, \( AB = AC \)
\( \Rightarrow \angle C = \angle B \) …….. (1)
\( AD \) and \( BE \) are altitudes \( \Rightarrow \) they make 90° with the sides.
\( \angle AOB = \angle EOD = 105^\circ \) (Vertically Opposite Angles)
In quadrilateral \( DOEC \):
\( \angle C = 360^\circ - 105^\circ - 90^\circ - 90^\circ = 75^\circ \)
From equation (1):
\( \Rightarrow \angle B = 75^\circ \)
Area of triangle:
\( AD \cdot BC = BE \cdot AC \)
\( \Rightarrow \frac{AD}{BE} = \frac{AC}{BC} \)
\( \Rightarrow \frac{AD}{BE} = \frac{2R \sin B}{2R \sin A} \)
\( \Rightarrow \frac{AD}{BE} = \frac{\sin 75^\circ}{\sin 30^\circ} \)
\( \Rightarrow \frac{AD}{BE} = 2 \sin 75^\circ \)
\( \Rightarrow \frac{AD}{BE} = 2 \cos 15^\circ \)
Correct option: (C) \( 2 \cos 15^\circ \)

For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: