Given, \( AB = AC \)
\( \Rightarrow \angle C = \angle B \) …….. (1)
\( AD \) and \( BE \) are altitudes \( \Rightarrow \) they make 90° with the sides.
\( \angle AOB = \angle EOD = 105^\circ \) (Vertically Opposite Angles)
In quadrilateral \( DOEC \):
\( \angle C = 360^\circ - 105^\circ - 90^\circ - 90^\circ = 75^\circ \)
From equation (1):
\( \Rightarrow \angle B = 75^\circ \)
Area of triangle:
\( AD \cdot BC = BE \cdot AC \)
\( \Rightarrow \frac{AD}{BE} = \frac{AC}{BC} \)
\( \Rightarrow \frac{AD}{BE} = \frac{2R \sin B}{2R \sin A} \)
\( \Rightarrow \frac{AD}{BE} = \frac{\sin 75^\circ}{\sin 30^\circ} \)
\( \Rightarrow \frac{AD}{BE} = 2 \sin 75^\circ \)
\( \Rightarrow \frac{AD}{BE} = 2 \cos 15^\circ \)
Correct option: (C) \( 2 \cos 15^\circ \)
ABCD is a trapezoid where BC is parallel to AD and perpendicular to AB . Kindly note that BC<AD . P is a point on AD such that CPD is an equilateral triangle. Q is a point on BC such that AQ is parallel to PC . If the area of the triangle CPD is 4√3. Find the area of the triangle ABQ.