To solve the problem, start by summarizing the conditions provided: \(p + q + r = 900\), \(r\) is a perfect square, \(150 < r < 500\), and \(0.3q \leq p \leq 0.7q\).
First, identify possible values for \(r\). The perfect squares between 150 and 500 are \(196, 225, 256, 289, 324, 361, 400, 441\). These values are derived from squaring integers 14 to 21.
For each valid \(r\), calculate \(p+q=900-r\). Then solve for \(p\) and \(q\) using \(p=0.3q\) and \(p=0.7q\) bounds.
Consider each \(r\):
| r | p+q | Minimum q (p=0.3q) | Maximum q (p=0.7q) |
|---|---|---|---|
| 196 | 704 | p=0.3q, q=542.31 | p=0.7q, q=640 |
| 225 | 675 | p=0.3q, q=519.23 | p=0.7q, q=625 |
| 256 | 644 | p=0.3q, q=495.38 | p=0.7q, q=633.33 |
| 289 | 611 | p=0.3q, q=469.23 | p=0.7q, q=615.71 |
| 324 | 576 | p=0.3q, q=442.46 | p=0.7q, q=617.14 |
| 361 | 539 | p=0.3q, q=414.23 | p=0.7q, q=612.86 |
| 400 | 500 | p=0.3q, q=384.61 | p=0.7q, q=500 |
| 441 | 459 | p=0.3q, q=353.07 | p=0.7q, q=500 |
Calculate maximum and minimum \(p\): For each \(r\), calculate \(p_{\text{min}} = 0.3q\) and \(p_{\text{max}} = 0.7q\).
Find valid \(p\) ranges and adjust \(q\) calculations. Identify max/min \(p\) sum for most constrained \(q\): Checking each, use \(400, q=384.61\) and \(500\) with corresponding \(p\) bounds. The valid \(p\) maximum and minimum for \(r=400\) yield \(p_{\text{max}}+p_{\text{min}} = 397\).
Verify this sum \(397\) falls within the range (397,397) which it does. Therefore, the solution is \(397\).
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: