Using the lens maker’s formula:
\[\frac{1}{f} = \left( \frac{\mu_{\text{lens}}}{\mu_{\text{air}}} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)\]
Given:
\[f = 20 \, \text{cm}, \quad R_1 = 15 \, \text{cm}, \quad R_2 = -30 \, \text{cm}\]
Substitute into the formula:
\[\frac{1}{20} = (\mu - 1) \left( \frac{1}{15} - \frac{1}{-30} \right)\]
Simplify the expression:
\[\frac{1}{20} = (\mu - 1) \left( \frac{3}{30} \right)\]
\[\Rightarrow \mu - 1 = \frac{1}{2}\]
\[\Rightarrow \mu = 1 + \frac{1}{2} = \frac{3}{2} = 1.5\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: