A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):
\[ U_{\text{top}} = mgh = mg(2R) \]
\[ K_{\text{bottom}} = \frac{1}{2} m v^2 \]
\[ U_{\text{spring}} = \frac{1}{2} k R^2 \]
\[ m g (2R) = \frac{1}{2} m v^2 + \frac{1}{2} k R^2 \]
\[ v = \sqrt{\frac{2gR + kR^2}{m}} \]
A cube of side 10 cm is suspended from one end of a fine string of length 27 cm, and a mass of 200 grams is connected to the other end of the string. When the cube is half immersed in water, the system remains in balance. Find the density of the cube.
In a low-speed airplane, a venturimeter with a 1.3:1 area ratio is used for airspeed measurement. The airplane’s maximum speed at sea level is 90 m/s. If the density of air at sea level is 1.225 kg/m³, the maximum pressure difference between the inlet and the throat of the venturimeter is __________ kPa (rounded off to two decimal places).
In a fluid flow, Mach number is an estimate of _________.
Consider a pair of point vortices with clockwise circulation \( \Gamma \) each. The distance between their centers is \( a \), as shown in the figure. Assume two-dimensional, incompressible, inviscid flow. Which one of the following options is correct?