Question:

The ratio of the focal lengths of a convex lens when kept in air and when it is immersed in a liquid is 1:2. If the refractive index of the material of the lens is 1.5, then the refractive index of the liquid is

Show Hint

Use the lens maker’s formula with relative refractive indices for lenses in different media.
Updated On: Jun 5, 2025
  • 1.20
  • 1.30
  • 1.25
  • 1.35
    \bigskip
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The lens makers formula for a lens in a medium is: \[ \frac{1}{f} = \left( \frac{\mu_g}{\mu_m} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \] where \( f \) is the focal length, \( \mu_g \) is the refractive index of the lens (glass), \( \mu_m \) is the refractive index of the medium, and \( R_1, R_2 \) are the radii of curvature (constant for the lens). - In air (\( \mu_m = \mu_a = 1 \)): \[ \frac{1}{f_a} = (\mu_g - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \] - In liquid (\( \mu_m = \mu_l \)): \[ \frac{1}{f_l} = \left( \frac{\mu_g}{\mu_l} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \] Given the focal length ratio \( f_a : f_l = 1 : 2 \), so \( f_l = 2 f_a \), or: \[ \frac{1}{f_l} = \frac{1}{2 f_a} \] Divide the lens maker’s equations: \[ \frac{\frac{1}{f_l}}{\frac{1}{f_a}} = \frac{\frac{\mu_g}{\mu_l} - 1}{\mu_g - 1} \] Since \( \frac{1}{f_l} = \frac{1}{2} \cdot \frac{1}{f_a} \), we have: \[ \frac{\frac{1}{2 f_a}}{\frac{1}{f_a}} = \frac{1}{2} = \frac{\frac{\mu_g}{\mu_l} - 1}{\mu_g - 1} \] Given \( \mu_g = 1.5 \): \[ \frac{\frac{1.5}{\mu_l} - 1}{1.5 - 1} = \frac{1}{2} \] Simplify: \[ \frac{\frac{1.5}{\mu_l} - 1}{0.5} = \frac{1}{2} \] Multiply through by 0.5: \[ \frac{1.5}{\mu_l} - 1 = \frac{0.5}{2} = 0.25 \] Solve for \( \mu_l \): \[ \frac{1.5}{\mu_l} = 1.25 \implies \mu_l = \frac{1.5}{1.25} = \frac{1.5 \cdot 4}{1.25 \cdot 4} = \frac{6}{5} = 1.2 \] Verify: - In air: \( \frac{1}{f_a} \propto (1.5 - 1) = 0.5 \). - In liquid: \( \frac{1}{f_l} \propto \left( \frac{1.5}{1.2} - 1 \right) = 1.25 - 1 = 0.25 \). - Ratio: \( \frac{1}{f_l} / \frac{1}{f_a} = \frac{0.25}{0.5} = \frac{1}{2} \), so \( f_a / f_l = \frac{1}{2} \), confirming \( f_l = 2 f_a \). Check options: - (1) 1.20: Matches \( \mu_l = 1.2 \). - (2) 1.30: Gives \( \frac{1.5}{1.3} - 1 \approx 0.1538 \), ratio \( \frac{0.1538}{0.5} \approx 0.308 \), incorrect. - (3) 1.25: Gives \( \frac{1.5}{1.25} - 1 = 0.2 \), ratio \( \frac{0.2}{0.5} = 0.4 \), incorrect. - (4) 1.35: Gives \( \frac{1.5}{1.35} - 1 \approx 0.111 \), ratio \( \frac{0.111}{0.5} \approx 0.222 \), incorrect. The error in the original solution (\( \mu_l = 0.75 \)) arose from incorrect manipulation; the correct \( \mu_l = 1.2 \) aligns with option (1).
Was this answer helpful?
0
0

AP EAPCET Notification