The average electric energy density (\( u_E \)) and average magnetic energy density (\( u_B \)) are given by:
\( u_E = \frac{1}{4} \epsilon_0 E_0^2 \)
\( u_B = \frac{1}{4\mu_0} B_0^2 \)
where \( \epsilon_0 \) is the permittivity of free space and \( \mu_0 \) is the permeability of free space.
For an electromagnetic wave, the electric and magnetic field amplitudes are related by:
\( E_0 = cB_0 \)
where \( c \) is the speed of light. Also, \( c = \sqrt{\frac{1}{\mu_0 \epsilon_0}} \).
Substituting \( E_0 = cB_0 \) into the expression for \( u_E \):
\( u_E = \frac{1}{4} \epsilon_0 (cB_0)^2 = \frac{1}{4} \epsilon_0 c^2 B_0^2 = \frac{1}{4} \epsilon_0 \frac{1}{\mu_0 \epsilon_0} B_0^2 = \frac{1}{4\mu_0} B_0^2 \)
Therefore, \( u_E = u_B \). The ratio of average electric energy density to average magnetic energy density is:
\( \frac{u_E}{u_B} = 1 \)
The ratio of average electric energy density to average magnetic energy density is 1 (Option 3).
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}