The average electric energy density (\( u_E \)) and average magnetic energy density (\( u_B \)) are given by:
\( u_E = \frac{1}{4} \epsilon_0 E_0^2 \)
\( u_B = \frac{1}{4\mu_0} B_0^2 \)
where \( \epsilon_0 \) is the permittivity of free space and \( \mu_0 \) is the permeability of free space.
For an electromagnetic wave, the electric and magnetic field amplitudes are related by:
\( E_0 = cB_0 \)
where \( c \) is the speed of light. Also, \( c = \sqrt{\frac{1}{\mu_0 \epsilon_0}} \).
Substituting \( E_0 = cB_0 \) into the expression for \( u_E \):
\( u_E = \frac{1}{4} \epsilon_0 (cB_0)^2 = \frac{1}{4} \epsilon_0 c^2 B_0^2 = \frac{1}{4} \epsilon_0 \frac{1}{\mu_0 \epsilon_0} B_0^2 = \frac{1}{4\mu_0} B_0^2 \)
Therefore, \( u_E = u_B \). The ratio of average electric energy density to average magnetic energy density is:
\( \frac{u_E}{u_B} = 1 \)
The ratio of average electric energy density to average magnetic energy density is 1 (Option 3).
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Electromagnetic waves carry energy but not momentum.
Reason (R): Mass of a photon is zero. In the light of the above statements.
choose the most appropriate answer from the options given below:
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: