The given function is:
\[
f(x) = \ln(x^2 + 1).
\]
To find the second derivative, we first compute the first derivative using the chain rule:
\[
f'(x) = \frac{d}{dx} \ln(x^2 + 1) = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}.
\]
Now, taking the derivative of \( f'(x) \) to get the second derivative:
\[
f''(x) = \frac{d}{dx} \left( \frac{2x}{x^2 + 1} \right).
\]
We use the quotient rule:
\[
f''(x) = \frac{(x^2 + 1)(2) - 2x(2x)}{(x^2 + 1)^2} = \frac{2(x^2 + 1) - 4x^2}{(x^2 + 1)^2} = \frac{2 - 2x^2}{(x^2 + 1)^2}.
\]
Thus, the second derivative is:
\[
f''(x) = \frac{2x}{(x^2 + 1)^2}.
\]