We are given that \( \alpha(m,n) = \int_{0}^{1} (1 + 3t)^n \, dt \).
Also, we know that
\[
\alpha(10,6) = \int_{0}^{1} (1 + 3t)^6 \, dt
\]
and
\[
\alpha(11,5) = p \cdot (14)^5.
\]
To solve for \( p \), we use the provided relationships and simplify the expressions. First, integrate the expression for \( \alpha(m,n) \).
\[
\alpha(10,6) = \int_{0}^{1} (1 + 3t)^6 \, dt = \left[ \frac{(1 + 3t)^7}{21} \right]_{0}^{1}
\]
\[
= \frac{(1+3 \cdot 1)^7 - (1+3 \cdot 0)^7}{21}
\]
\[
= \frac{(4)^7 - 1^7}{21} = \frac{16384 - 1}{21} = \frac{16383}{21}
\]
Now calculate \( \alpha(11,5) \):
\[
\alpha(11,5) = \int_{0}^{1} (1 + 3t)^5 \, dt = \left[ \frac{(1 + 3t)^6}{18} \right]_{0}^{1}
\]
\[
= \frac{(1 + 3 \cdot 1)^6 - (1 + 3 \cdot 0)^6}{18}
\]
\[
= \frac{4^6 - 1^6}{18} = \frac{4096 - 1}{18} = \frac{4095}{18}.
\]
Equating the two equations:
\[
\frac{4095}{18} = p \cdot (14)^5.
\]
\[
p = \frac{4095}{18 \times 14^5} = 32.
\]
Thus, the value of \( p \) is \( \boxed{32} \).