Evaluation of the Definite Integral
We need to find the value of the integral:
$$ I = \int_{0}^{\pi} e^{\cos^2 x} \cos^3((2n+1)x) dx $$
for any integer $n$.
Step 1: Apply the property of definite integrals
We use the property: $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$. Here, $a = \pi$, so:
$$ I = \int_{0}^{\pi} e^{\cos^2 (\pi-x)} \cos^3((2n+1)(\pi-x)) dx $$
Step 2: Simplify the terms inside the integral
$\cos(\pi-x) = -\cos x$, so $\cos^2(\pi-x) = (-\cos x)^2 = \cos^2 x$.
$\cos((2n+1)(\pi-x)) = \cos((2n+1)\pi - (2n+1)x)$. Since $2n+1$ is an odd integer, $(2n+1)\pi = (2k+1)\pi$ for some integer $k$. We know that $\cos((2k+1)\pi - \theta) = -\cos(\theta)$. Therefore, $\cos((2n+1)\pi - (2n+1)x) = -\cos((2n+1)x)$.
Step 3: Substitute the simplified terms back into the integral
$$ I = \int_{0}^{\pi} e^{\cos^2 x} (-\cos((2n+1)x))^3 dx $$
$$ I = \int_{0}^{\pi} e^{\cos^2 x} (-\cos^3((2n+1)x)) dx $$
$$ I = -\int_{0}^{\pi} e^{\cos^2 x} \cos^3((2n+1)x) dx $$
Step 4: Relate the new integral to the original integral
The integral on the right side is the original integral $I$:
$$ I = -I $$
Step 5: Solve for I
Adding $I$ to both sides of the equation:
$$ I + I = -I + I $$
$$ 2I = 0 $$
Dividing by 2:
$$ I = 0 $$
Thus, the value of the integral is 0 for any integer $n$.
Final Answer: (C) 0