Solution:
For a rolling spherical shell, the angular velocity \( \omega = \frac{v}{R} \).
The rotational kinetic energy is given by:
\[
K_{\text{rot}} = \frac{1}{2} \left( \frac{2}{3} m R^2 \right) \left( \frac{v}{R} \right)^2 = \frac{1}{2} \left( \frac{2}{3} m R^2 \right) \left( \frac{v^2}{R^2} \right) = \frac{1}{3} m v^2.
\]
The total kinetic energy is:
\[
K_{\text{total}} = \frac{1}{2} mv^2 + \frac{1}{2} \left( \frac{2}{3} m R^2 \right) \left( \frac{v}{R} \right)^2 = \frac{1}{2} mv^2 + \frac{1}{3} mv^2 = \frac{5}{6} mv^2.
\]
The ratio of rotational kinetic energy to total kinetic energy is:
\[
\frac{K_{\text{rot}}}{K_{\text{total}}} = \frac{\frac{1}{3} m v^2}{\frac{5}{6} m v^2} = \frac{2}{5}.
\]
Thus, \( \frac{x}{5} = \frac{2}{5} \), so \( x = 2 \).
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is: 
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.