Solution:
For a rolling spherical shell, the angular velocity \( \omega = \frac{v}{R} \).
The rotational kinetic energy is given by:
\[
K_{\text{rot}} = \frac{1}{2} \left( \frac{2}{3} m R^2 \right) \left( \frac{v}{R} \right)^2 = \frac{1}{2} \left( \frac{2}{3} m R^2 \right) \left( \frac{v^2}{R^2} \right) = \frac{1}{3} m v^2.
\]
The total kinetic energy is:
\[
K_{\text{total}} = \frac{1}{2} mv^2 + \frac{1}{2} \left( \frac{2}{3} m R^2 \right) \left( \frac{v}{R} \right)^2 = \frac{1}{2} mv^2 + \frac{1}{3} mv^2 = \frac{5}{6} mv^2.
\]
The ratio of rotational kinetic energy to total kinetic energy is:
\[
\frac{K_{\text{rot}}}{K_{\text{total}}} = \frac{\frac{1}{3} m v^2}{\frac{5}{6} m v^2} = \frac{2}{5}.
\]
Thus, \( \frac{x}{5} = \frac{2}{5} \), so \( x = 2 \).
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: