For maximum current, the circuit must be in resonance.
The resonant frequency \( f_0 \) is given by:
\[f_0 = \frac{1}{2\pi\sqrt{L \cdot C}}\]
Substitute \( L = 100 \times 10^{-3} \, \text{H} \) and \( C = 2.5 \times 10^{-9} \, \text{F} \):
\[f_0 = \frac{1}{2\pi\sqrt{100 \times 10^{-3} \times 2.5 \times 10^{-9}}}\]
Simplify under the square root:
\[f_0 = \frac{1}{2\pi\sqrt{25 \times 10^{-11}}}\]
\[f_0 = \frac{1}{2\pi \times 5 \times 10^{-6}}\]
Using \( \pi^2 = 10 \):
\[f_0 = \frac{10^5 \sqrt{10}}{10}\]
\[f_0 = 10 \times 10^3 \, \text{Hz}\]
Find output voltage in the given circuit.
A | B | Y |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: