\[ \begin{array}{|c|c|} \hline \textbf{[A] (mol/L)} & \textbf{t$_{1/2}$ (min)} \\ \hline 0.100 & 200 \\ 0.025 & 100 \\ \hline \end{array} \]
Step 1: From the given data, calculate the order of the reaction. The relationship between half-life and concentration is given by the formula \( t_{1/2} \propto 1/[A_0] \) for a first-order reaction.
Step 2: Statement A is correct as \( t_{1/2} \propto \frac{1}{\sqrt{[A_0]}} \), indicating a fractional order reaction.
Step 3: Statement B is correct because the half-life depends on the initial concentration.
Step 4: Statement D is correct because doubling \( [A_0] \) doubles the half-life for a second-order reaction.
Final Conclusion: The correct answer is Option (1), A, B and D Only.
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.