\[ \begin{array}{|c|c|} \hline \textbf{[A] (mol/L)} & \textbf{t$_{1/2}$ (min)} \\ \hline 0.100 & 200 \\ 0.025 & 100 \\ \hline \end{array} \]
Step 1: From the given data, calculate the order of the reaction. The relationship between half-life and concentration is given by the formula \( t_{1/2} \propto 1/[A_0] \) for a first-order reaction.
Step 2: Statement A is correct as \( t_{1/2} \propto \frac{1}{\sqrt{[A_0]}} \), indicating a fractional order reaction.
Step 3: Statement B is correct because the half-life depends on the initial concentration.
Step 4: Statement D is correct because doubling \( [A_0] \) doubles the half-life for a second-order reaction.
Final Conclusion: The correct answer is Option (1), A, B and D Only.
A piston of mass M is hung from a massless spring whose restoring force law goes as F = -kx, where k is the spring constant of appropriate dimension. The piston separates the vertical chamber into two parts, where the bottom part is filled with 'n' moles of an ideal gas. An external work is done on the gas isothermally (at a constant temperature T) with the help of a heating filament (with negligible volume) mounted in lower part of the chamber, so that the piston goes up from a height $ L_0 $ to $ L_1 $, the total energy delivered by the filament is (Assume spring to be in its natural length before heating) 
A solution of aluminium chloride is electrolyzed for 30 minutes using a current of 2A. The amount of the aluminium deposited at the cathode is _________
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is: