Step 1: Form the equation.
\[
n^2+(n+1)^2=365 \ \Rightarrow\ 2n^2+2n+1=365
\]
\[
\Rightarrow\ 2n^2+2n-364=0 \ \Rightarrow\ n^2+n-182=0.
\]
Step 2: Solve the quadratic.
\[
\Delta=1+4\cdot 182=729 $\Rightarrow$ \sqrt{\Delta}=27.
\]
\[
n=\frac{-1\pm 27}{2}\ \Rightarrow\ n=13 \ \text{or}\ n=-14.
\]
Since $n$ is positive, $n=13$. Hence the integers are $13$ and $14$.
\boxed{13\ \text{and}\ 14}
If the given figure shows the graph of polynomial \( y = ax^2 + bx + c \), then:
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.
Find mean of the following frequency table:
