Step 1: Form the equation.
\[
n^2+(n+1)^2=365 \ \Rightarrow\ 2n^2+2n+1=365
\]
\[
\Rightarrow\ 2n^2+2n-364=0 \ \Rightarrow\ n^2+n-182=0.
\]
Step 2: Solve the quadratic.
\[
\Delta=1+4\cdot 182=729 $\Rightarrow$ \sqrt{\Delta}=27.
\]
\[
n=\frac{-1\pm 27}{2}\ \Rightarrow\ n=13 \ \text{or}\ n=-14.
\]
Since $n$ is positive, $n=13$. Hence the integers are $13$ and $14$.
\boxed{13\ \text{and}\ 14}
The discriminant of the quadratic equation $3x^2 - 4\sqrt{3}\,x + 4 = 0$ will be: