Using the photoelectric equation:
\[
h \nu = W + e V_{\text{stop}},
\]
where:
- \( h \nu \) is the energy of the incident photon,
- \( W \) is the work function,
- \( e \) is the charge of an electron,
- \( V_{\text{stop}} \) is the stopping potential.
Substitute the given values into the equation:
\[
1242 \, \text{eV} \cdot \text{nm} = 4.12 \, \text{eV} + 4 \, \text{eV}.
\]
Solve for the energy of the photon:
\[
h \nu = 4.12 \, \text{eV} + 4 \, \text{eV} = 8.12 \, \text{eV}.
\]
Now, use the formula for the energy of a photon:
\[
h \nu = \frac{h c}{\lambda},
\]
where \( h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \), \( c = 3 \times 10^8 \, \text{m/s} \), and \( \lambda \) is the wavelength in meters.
Substitute the value of \( h \nu \) in eV and convert it to Joules:
\[
8.12 \, \text{eV} \times 1.602 \times 10^{-19} \, \text{J/eV} = 1.299 \times 10^{-18} \, \text{J}.
\]
Now, solve for \( \lambda \):
\[
\lambda = \frac{h c}{1.299 \times 10^{-18}}.
\]
Substitute the known values:
\[
\lambda = \frac{(6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (3 \times 10^8 \, \text{m/s})}{1.299 \times 10^{-18} \, \text{J}}.
\]
\[
\lambda \approx 1.53 \times 10^{-7} \, \text{m} = 153 \, \text{nm}.
\]
Thus, the wavelength of the incident radiation is \( \boxed{153 \, \text{nm}} \).