Find the vector equation of the plane passing through (1,2,3)and perpendicular to the plane r→.(i^+2j^-5k^)+9=0.
The position vector of the point (1,2,3) is \(\overrightarrow{r_1}\) =\(\hat i+2\hat j^+3\hat k^.\)
The direction ratios of the normal to the plane,
\(\overrightarrow{r}\).(\(\hat i + 2\hat {j}-5\hat k\))+9=0, are 1,2,and -5 and the normal vector is \(\overrightarrow{N_1}\)=\(\hat i + 2\hat {j}-5\hat k\)
The equation of a line passing through a point and perpendicular to the given plane is given by,
\(\overrightarrow{I}\)=\(\overrightarrow{r}\)+λN→, λ∈R
⇒\(\overrightarrow{I}\)=(\(\hat i + 2\hat {j}+3\hat k\))+λ(\(\hat i + 2\hat {j}-5\hat k\)).
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}
