Find the vector equation of the line passing through the point (1, 2, -4)and perpendicular to the two lines: \(\frac {x-8}{3}=\frac {y+19}{-16}=\frac {z-10}{7}\) and \(\frac {x-15}{3}=\frac {y-29}{8} =\frac {z-5}{-5}\)
Let the required line be parallel to the vector \(\vec b\) given by,
\(\vec b=b_1\hat i+b_2\hat j +b_3 \hat k\)
The position vector of the point (1, 2, -4) is \(\vec a= \hat i+2\hat j-4\hat k\)
The equation of the line passing through (1, 2,-4) and parallel to vector \(\vec b\) is
\(\vec r=\vec a+λ\vec b\)
⇒\(\vec r\) = (\(\hat i+2\hat j-4\hat k\)) + λ(\(b_1\hat i+b_2\hat j +b_3 \hat k\)) ...(1)
The equations of the lines are
\(\frac {x-8}{3}=\frac {y+19}{-16}=\frac {z-10}{7} \) ...(2)
\(\frac {x-15}{3}=\frac {y-29}{8}=\frac {z-5}{-5 }\) ...(3)
Line (1) and line (2) are perpendicular to each other.
∴3b1-16b2+7b3 = 0 ...(4)
Also, line (1) and line (3) are perpendicular to each other.
∴3b1+8b2-5b3 = 0 ...(5)
From equations (4) and (5), we obtain
\(\frac {b_1}{(-16)(-5)-8×7}=\frac {b_2}{7×3-3(-5)} =\frac {b_3}{3×8-3(-16)}\)
⇒ \(\frac {b_1}{24}=\frac {b_2}{36}=\frac {b_3}{72}\)
⇒ \(\frac {b_1}{2}=\frac {b_2}{3}=\frac {b_3}{6}\)
∴Direction ratios of \(\vec b\) are 2, 3 and 6.
∴ \(\vec b=2\hat i+3\hat j +6\hat k\)
Substituting \(\vec b=2\hat i+3\hat j +6\hat k\) in equation(1), we obtain
\(\vec r\) = \((\hat i+2\hat j-4\hat k)\) + λ\((2\hat i+3\hat j +6\hat k)\)
This is the equation of the required line.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Let \(\alpha x+\beta y+y z=1\) be the equation of a plane passing through the point\((3,-2,5)\)and perpendicular to the line joining the points \((1,2,3)\) and \((-2,3,5)\) Then the value of \(\alpha \beta y\)is equal to ____
What is the Planning Process?