Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector \(3\hat i+5\hat j-6\hat k.\)
The normal vector is,
\(\overrightarrow n= 3\hat i+5\hat j-6\hat k.\)
∴\(\hat n=\frac{\overrightarrow n}{\mid \overrightarrow n\mid}\)
=\(\frac{3\hat i+5\hat j-6\hat k.}{\sqrt{(3)^2+(5)^2+(6)^2}}\)
=\(\frac{3\hat i+5\hat j-6\hat k.}{\sqrt 70}\)
It is known that the equation of the plane with position vector \(\overrightarrow r\) is given by,
\(\overrightarrow r.\hat n=d\)
\(\Rightarrow \hat r.\bigg(\frac{3\hat i+5\hat j-6\hat k.}{\sqrt {70}}\bigg)=7\)
This is the vector equation of the required plane.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.
A surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely: