Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector \(3\hat i+5\hat j-6\hat k.\)
The normal vector is,
\(\overrightarrow n= 3\hat i+5\hat j-6\hat k.\)
∴\(\hat n=\frac{\overrightarrow n}{\mid \overrightarrow n\mid}\)
=\(\frac{3\hat i+5\hat j-6\hat k.}{\sqrt{(3)^2+(5)^2+(6)^2}}\)
=\(\frac{3\hat i+5\hat j-6\hat k.}{\sqrt 70}\)
It is known that the equation of the plane with position vector \(\overrightarrow r\) is given by,
\(\overrightarrow r.\hat n=d\)
\(\Rightarrow \hat r.\bigg(\frac{3\hat i+5\hat j-6\hat k.}{\sqrt {70}}\bigg)=7\)
This is the vector equation of the required plane.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
From the following information, calculate the 'Proprietary Ratio':
Using the worksheet, find out the error and its reason for the given 'VLOOKUP' syntax:
\[ \begin{array}{|c|c|c|c|} \hline \text{S. No.} & \text{Consumables} & \text{Price in FY 21-22} & \text{Price in FY 23-24} \\ \hline 1 & \text{Muskmelon} & 45 & 122 \\ 2 & \text{Watermelon} & 9 & 21 \\ 3 & \text{Squash} & 22 & 35 \\ 4 & \text{Gourd} & 47 & 68 \\ 5 & \text{Curd} & 49 & 66 \\ 6 & \text{Brisket} & 33 & 43 \\ 7 & \text{Poultry} & 88 & 96 \\ \hline \end{array} \]
(i) =VLOOKUP(B1, B4 : D6, 2, 0)
(ii) =SQRT(VLOOKUP(C2, C2 : D8, 2, 0) – 100)
(iii) =VLOOKUP(B5, B6 : D8, 1, 0)
(iv) =VLOOKUP(B3, B2 : D8, 5, 0)
(v) =VLOOKUP(B5, B3 : D8, 0, 0)
(vi) =VLOOKUP(B2, B2 : D7, 2, 0)/0
A surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely: