Let the line passing through the points P (3,-2,-5) and Q(3,-2,6), be PQ.
Since PQ passes through P (3,-2,-5), its position vector is given by,
\(\overrightarrow a=3\widehat{i}-2\widehat j-5\widehat k\)
The direction ratios of PQ are given by, (3-3)=0, (-2+2)=0, (6+5)=11
The equation of the vector in the direction of PQ is
\(\overrightarrow b=0 \widehat i-0. \widehat j+11 \widehat k=11 \widehat k\)
The equation of PQ in vector form is given by, \(\overrightarrow r= \overrightarrow a+ \lambda \overrightarrow b, \lambda \in R\)
\(\Rightarrow \overrightarrow r=(3 \widehat i-2\widehat j-5\widehat k)+11 \lambda \widehat k\)
The equation of PQ in cartesian form is
\(\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c} i.e.,\frac{x-3}{0}=\frac{y+2}{0}=\frac{z+5}{11}\)
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
In a plane, the equation of a line is given by the popular equation y = m x + C. Let's look at how the equation of a line is written in vector form and Cartesian form.
Consider a line that passes through a given point, say ‘A’, and the line is parallel to a given vector '\(\vec{b}\)‘. Here, the line ’l' is given to pass through ‘A’, whose position vector is given by '\(\vec{a}\)‘. Now, consider another arbitrary point ’P' on the given line, where the position vector of 'P' is given by '\(\vec{r}\)'.
\(\vec{AP}\)=𝜆\(\vec{b}\)
Also, we can write vector AP in the following manner:
\(\vec{AP}\)=\(\vec{OP}\)–\(\vec{OA}\)
𝜆\(\vec{b}\) =\(\vec{r}\)–\(\vec{a}\)
\(\vec{a}\)=\(\vec{a}\)+𝜆\(\vec{b}\)
\(\vec{b}\)=𝑏1\(\hat{i}\)+𝑏2\(\hat{j}\) +𝑏3\(\hat{k}\)