We are asked to simplify the following expression:
\[
\sin 60^\circ - \sin 80^\circ + \sin 100^\circ - \sin 120^\circ
\]
Using the sum-to-product identities for sine:
\[
\sin A - \sin B = 2 \cos\left( \frac{A + B}{2} \right) \sin\left( \frac{A - B}{2} \right)
\]
First, simplify \( \sin 60^\circ - \sin 120^\circ \):
\[
\sin 60^\circ - \sin 120^\circ = 2 \cos\left( \frac{60^\circ + 120^\circ}{2} \right) \sin\left( \frac{60^\circ - 120^\circ}{2} \right)
\]
\[
= 2 \cos(90^\circ) \sin(-30^\circ) = 0
\]
Now simplify \( \sin 80^\circ - \sin 100^\circ \):
\[
\sin 80^\circ - \sin 100^\circ = 2 \cos\left( \frac{80^\circ + 100^\circ}{2} \right) \sin\left( \frac{80^\circ - 100^\circ}{2} \right)
\]
\[
= 2 \cos(90^\circ) \sin(-10^\circ) = 0
\]
Thus, the entire expression simplifies to:
\[
0 + 0 = 0
\]
Therefore, the value of the expression is 0.