We are given: \[ \cot^{-1}(1) + \cot^{-1}(2) + \cot^{-1}(3) \] Using the identity for the sum of inverse cotangents: \[ \cot^{-1}(x) + \cot^{-1}(y) = \cot^{-1} \left( \frac{xy - 1}{x + y} \right) \] First, compute \( \cot^{-1}(1) + \cot^{-1}(2) \): \[ \cot^{-1}(1) + \cot^{-1}(2) = \cot^{-1} \left( \frac{1 \times 2 - 1}{1 + 2} \right) = \cot^{-1} \left( \frac{1}{3} \right) \] Now, add \( \cot^{-1}(3) \): \[ \cot^{-1} \left( \frac{1}{3} \right) + \cot^{-1}(3) = \cot^{-1} \left( \frac{\left( \frac{1}{3} \right) \times 3 - 1}{\frac{1}{3} + 3} \right) = \cot^{-1}(0) \] Thus: \[ \cot^{-1}(0) = \frac{\pi}{2} \] So the answer is \( \frac{\pi}{2}\).
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.