We are given: \[ \cot^{-1}(1) + \cot^{-1}(2) + \cot^{-1}(3) \] Using the identity for the sum of inverse cotangents: \[ \cot^{-1}(x) + \cot^{-1}(y) = \cot^{-1} \left( \frac{xy - 1}{x + y} \right) \] First, compute \( \cot^{-1}(1) + \cot^{-1}(2) \): \[ \cot^{-1}(1) + \cot^{-1}(2) = \cot^{-1} \left( \frac{1 \times 2 - 1}{1 + 2} \right) = \cot^{-1} \left( \frac{1}{3} \right) \] Now, add \( \cot^{-1}(3) \): \[ \cot^{-1} \left( \frac{1}{3} \right) + \cot^{-1}(3) = \cot^{-1} \left( \frac{\left( \frac{1}{3} \right) \times 3 - 1}{\frac{1}{3} + 3} \right) = \cot^{-1}(0) \] Thus: \[ \cot^{-1}(0) = \frac{\pi}{2} \] So the answer is \( \frac{\pi}{2}\).
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)
If
\[ \sin \theta + 2 \cos \theta = 1 \]
and
\[ \theta \text{ lies in the 4\textsuperscript{th} quadrant (not on coordinate axes), then } 7 \cos \theta + 6 \sin \theta =\ ? \]