A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
Moving charges generate an electric field and the rate of flow of charge is known as current. This is the basic concept in Electrostatics. Another important concept related to moving electric charges is the magnetic effect of current. Magnetism is caused by the current.
Region in space around a magnet where the Magnet has its Magnetic effect is called the Magnetic field of the Magnet. Let us suppose that there is a point charge q (moving with a velocity v and, located at r at a given time t) in presence of both the electric field E (r) and the magnetic field B (r). The force on an electric charge q due to both of them can be written as,
F = q [ E (r) + v × B (r)] ≡ EElectric +Fmagnetic
This force was based on the extensive experiments of Ampere and others. It is called the Lorentz force.