Step 1: Parameterize the two given lines
The parametric equations of the lines are:
\[
l_1: \frac{x - 1}{1} = \frac{y - 1}{2} = \frac{z - 2}{3} = \lambda,
\]
so any point on \( l_1 \) is:
\[
(1 + \lambda, 1 + 2\lambda, 2 + 3\lambda).
\]
For the second line:
\[
l_2: \frac{x - 1}{0} = \frac{y}{-3} = \frac{z - 7}{2} = \mu,
\]
so any point on \( l_2 \) is:
\[
(1, -3\mu, 7 + 2\mu).
\]
Step 2: Find the point of intersection of the two lines
Equating the coordinates of \( l_1 \) and \( l_2 \):
\[
1 + \lambda = 1, \quad 1 + 2\lambda = -3\mu, \quad 2 + 3\lambda = 7 + 2\mu.
\]
From \( 1 + \lambda = 1 \), \( \lambda = 0 \). Substitute \( \lambda = 0 \) into the other equations:
\[
1 = -3\mu, \quad 2 = 7 + 2\mu \implies \mu = -1.
\]
Thus, the point of intersection is:
\[
(1, 1, 5).
\]
Step 3: Find the direction ratios of the required line
The direction ratios of the given lines are:
\[
\vec{d_1} = \langle 1, 2, 3 \rangle, \quad \vec{d_2} = \langle 0, -3, 2 \rangle.
\]
The direction ratios of the line perpendicular to both \( l_1 \) and \( l_2 \) are given by:
\[
\vec{d} = \vec{d_1} \times \vec{d_2}.
\]
Calculate the cross product:
\[
\vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 3 \\
0 & -3 & 2 \end{vmatrix}
= \hat{i}(4 - (-9)) - \hat{j}(2 - 0) + \hat{k}(-3 - 0).
\]
\[
\vec{d} = \langle 13, -2, -3 \rangle.
\]
Step 4: Write the equation of the required line
The equation of the required line passing through \( (1, 1, 5) \) with direction ratios \( \langle 13, -2, -3 \rangle \) is:
\[
\frac{x - 1}{13} = \frac{y - 1}{-2} = \frac{z - 5}{-3}.
\]
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: