Step 1: Find \( k \)
The direction ratios of the first line are \( \langle -3, 2k, 2 \rangle \) and for the second line are \( \langle 3k, 1, -7 \rangle \). Since the lines are perpendicular:
\[
(-3)(3k) + (2k)(1) + (2)(-7) = 0
\]
\[
-9k + 2k - 14 = 0 \implies -7k = 14 \implies k = -2
\]
Step 2: Find the vector equation of the perpendicular line
The direction vectors are:
\[
\vec{b}_1 = \langle -3, -4, 2 \rangle, \quad \vec{b}_2 = \langle -6, 1, -7 \rangle
\]
The perpendicular vector is:
\[
\vec{b} = \vec{b}_1 \times \vec{b}_2 =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
-3 & -4 & 2 \\
-6 & 1 & -7
\end{vmatrix}
= 26\hat{i} - 33\hat{j} - 27\hat{k}
\]
The required equation is:
\[
\vec{r} = \langle 3, -4, 7 \rangle + \lambda (26\hat{i} - 33\hat{j} - 27\hat{k})
\]