Step 1: Standardize the equations of the lines
The given line \( L_1 \) is:
\[
\frac{x}{2} = \frac{2}{y - 6} = \frac{1}{-z - 1}
\]
This can be rewritten in vector form as:
\[
\vec{r}_1 = \vec{0} + \lambda (2\hat{i} + \hat{j} + \hat{k})
\]
The line \( L_2 \), which is parallel to \( L_1 \) and passes through \( (4, 0, -5) \), is:
\[
\vec{r}_2 = (4\hat{i} - 5\hat{k}) + \mu (2\hat{i} + \hat{j} + \hat{k})
\]
Step 2: Vector between the lines
The position vector difference between points on the two lines is:
\[
\vec{a}_2 - \vec{a}_1 = (4\hat{i} - 5\hat{k}) - (0) = 4\hat{i} - 5\hat{k}
\]
The direction vector of both lines is:
\[
\vec{b} = 2\hat{i} + \hat{j} + \hat{k}
\]
Step 3: Find the shortest distance
The shortest distance \( S.D. \) between two skew lines is given by:
\[
S.D. = \frac{|(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b})|}{|\vec{b}|}
\]
Compute the cross product \( \vec{b} \times (\vec{a}_2 - \vec{a}_1) \):
\[
\vec{b} \times (\vec{a}_2 - \vec{a}_1) =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & 1 \\
4 & 0 & -5
\end{vmatrix}
= 9\hat{i} - 16\hat{j} + 14\hat{k}
\]
The magnitude of \( \vec{b} \) is:
\[
|\vec{b}| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}
\]
Thus, the shortest distance is:
\[
S.D. = \frac{\sqrt{(81 + 256 + 196)}}{3} = \frac{\sqrt{533}}{3} \text{ units.}
\]