Step 1: The area of the parallelogram is given by the magnitude of the cross product of the vectors \( \vec{a} \) and \( \vec{b} \): \[ \text{Area} = |\vec{a} \times \vec{b}| \]
Step 2: Compute the cross product \( \vec{a} \times \vec{b} \): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
3 & 1 & 2
1 & 2 & -2 \end{vmatrix} \]
Step 3: Expand the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & 2
2 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2
1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1
1 & 2 \end{vmatrix} \] \[ = \hat{i} (-2 - 4) - \hat{j} (-6 - 2) + \hat{k} (6 - 1) \] \[ = -6 \hat{i} + 8 \hat{j} + 5 \hat{k} \] Step 4: Find the magnitude of the cross product: \[ |\vec{a} \times \vec{b}| = \sqrt{(-6)^2 + 8^2 + 5^2} = \sqrt{36 + 64 + 25} = \sqrt{125} = 10 \] \bigskip
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $