Step 1: The area of the parallelogram is given by the magnitude of the cross product of the vectors \( \vec{a} \) and \( \vec{b} \): \[ \text{Area} = |\vec{a} \times \vec{b}| \]
Step 2: Compute the cross product \( \vec{a} \times \vec{b} \): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
3 & 1 & 2
1 & 2 & -2 \end{vmatrix} \]
Step 3: Expand the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & 2
2 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2
1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1
1 & 2 \end{vmatrix} \] \[ = \hat{i} (-2 - 4) - \hat{j} (-6 - 2) + \hat{k} (6 - 1) \] \[ = -6 \hat{i} + 8 \hat{j} + 5 \hat{k} \] Step 4: Find the magnitude of the cross product: \[ |\vec{a} \times \vec{b}| = \sqrt{(-6)^2 + 8^2 + 5^2} = \sqrt{36 + 64 + 25} = \sqrt{125} = 10 \] \bigskip
Let $\vec{a}$ and $\vec{c}$ be unit vectors such that the angle between them is $\cos^{-1} \left( \frac{1}{4} \right)$. If $\vec{b} = 2\vec{c} + \lambda \vec{a}$. Where $\lambda > 0$ and $|\vec{b}| = 4$, then $\lambda$ is equal to:
If \( \mathbf{a} = \hat{i} + \hat{j} + \hat{k}, \, \mathbf{b} = 2\hat{i} - \hat{j} + 3\hat{k}, \, \mathbf{c} = \hat{i} - 2\hat{j} + \hat{k} \), \(\text{ then a vector of magnitude }\) \( \sqrt{22} \) \(\text{ which is parallel to }\) \( 2\mathbf{a} - \mathbf{b} + \mathbf{c} \) is:
If $\vec{a}$ and $\vec{b}$ are two vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} + \vec{b}| = 1$, then the value of $|\vec{a} \times \vec{b}|$ is:
If $\vec{a}$, $\vec{b}$ and $\vec{c}$ are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{a} \cdot \vec{c} = 2$ and $\vec{b} \cdot \vec{c} = 1$. If $|\vec{b}| = 1$, then the value of $|\vec{a}|$ is: