If \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) are the position vectors of the points \( A, B, C \) respectively and
\[
5\mathbf{a} - 3\mathbf{b} - 2\mathbf{c} = \mathbf{0},
\]
then find the ratio in which the point \( C \) divides the line segment \( BA \) externally.
Show Hint
For a point dividing a line segment \( BA \) externally in the ratio \( m:n \), the position vector is given by:
\[
\mathbf{c} = \frac{m\mathbf{a} - n\mathbf{b}}{m - n}.
\]
Step 1: Define the Position Vector of \( C \)
Let \( C \) divide \( BA \) externally in the ratio \( 5:3 \). The position vector of \( C \) can be expressed as:
\[
\mathbf{c} = \frac{5\mathbf{a} - 3\mathbf{b}}{5 - 3}.
\]
Step 2: Use the Given Equation
Rearranging the given equation \( 5\mathbf{a} - 3\mathbf{b} - 2\mathbf{c} = \mathbf{0} \), we obtain:
\[
2\mathbf{c} = 5\mathbf{a} - 3\mathbf{b}.
\]
Step 3: Substitute the Expression for \( \mathbf{c} \)
Substitute the previously derived expression for \( \mathbf{c} \):
\[
2 \times \frac{5\mathbf{a} - 3\mathbf{b}}{5 - 3} = 5\mathbf{a} - 3\mathbf{b}.
\]
Simplifying the expression gives:
\[
\mathbf{c} = \frac{5\mathbf{a} - 3\mathbf{b}}{2}.
\]
Thus, point \( C \) divides the line segment \( BA \) externally in the ratio \( 5:3 \).