Step 1: Define the Points
Let the semicircle be centered at \( O \) with radius \( r \), and points \( A(-r,0) \), \( B(r,0) \), and \( P(x,y) \) on the semicircle.
Step 2: Write the Vectors
Vectors from \( A \) and \( B \) to \( P \): \[ \mathbf{AP} = (x + r, y), \quad \mathbf{BP} = (x - r, y). \]
Step 3: Find the Dot Product
\[ \mathbf{AP} \cdot \mathbf{BP} = (x + r, y) \cdot (x - r, y). \] \[ = (x + r)(x - r) + y^2. \] \[ = x^2 - r^2 + y^2. \] Using the equation of the semicircle: \[ x^2 + y^2 = r^2. \] \[ \mathbf{AP} \cdot \mathbf{BP} = r^2 - r^2 = 0. \] Since dot product is zero, \( AP \) is perpendicular to \( BP \), proving a right angle.
Let $\vec{a}$ and $\vec{c}$ be unit vectors such that the angle between them is $\cos^{-1} \left( \frac{1}{4} \right)$. If $\vec{b} = 2\vec{c} + \lambda \vec{a}$. Where $\lambda > 0$ and $|\vec{b}| = 4$, then $\lambda$ is equal to:
If \( \mathbf{a} = \hat{i} + \hat{j} + \hat{k}, \, \mathbf{b} = 2\hat{i} - \hat{j} + 3\hat{k}, \, \mathbf{c} = \hat{i} - 2\hat{j} + \hat{k} \), \(\text{ then a vector of magnitude }\) \( \sqrt{22} \) \(\text{ which is parallel to }\) \( 2\mathbf{a} - \mathbf{b} + \mathbf{c} \) is:
If $\vec{a}$ and $\vec{b}$ are two vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} + \vec{b}| = 1$, then the value of $|\vec{a} \times \vec{b}|$ is:
If $\vec{a}$, $\vec{b}$ and $\vec{c}$ are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{a} \cdot \vec{c} = 2$ and $\vec{b} \cdot \vec{c} = 1$. If $|\vec{b}| = 1$, then the value of $|\vec{a}|$ is: