Step 1: Formula for Cross Product Magnitude.
The magnitude of the cross product of two vectors is given by the formula:
\[
|\mathbf{A} \times \mathbf{B}| = |\mathbf{A}| |\mathbf{B}| \sin \theta
\]
where:
\( |\mathbf{A}| \) is the magnitude of vector \( \mathbf{A} \),
\( |\mathbf{B}| \) is the magnitude of vector \( \mathbf{B} \),
\( \theta \) is the angle between the two vectors.
Step 2: Plugging in Known Values.
We are given:
\( |\mathbf{A}| = 10 \),
\( |\mathbf{A} \times \mathbf{B}| = 50 \),
\( \theta = 60^\circ \).
Substituting these values into the formula:
\[
50 = 10 \times |\mathbf{B}| \times \sin 60^\circ
\]
Since \( \sin 60^\circ = \frac{\sqrt{3}}{2} \), we have:
\[
50 = 10 \times |\mathbf{B}| \times \frac{\sqrt{3}}{2}
\]
Step 3: Solving for \( |\mathbf{B}| \).
Now solve for \( |\mathbf{B}| \):
\[
50 = 5 \times |\mathbf{B}| \times \sqrt{3}
\]
\[
|\mathbf{B}| = \frac{50}{5 \times \sqrt{3}} = \frac{10}{\sqrt{3}}
\]
Step 4: Conclusion.
Thus, the magnitude of vector \( \mathbf{B} \) is \( \frac{10}{\sqrt{3}} \).