Let OACB be a sector of the circle making 60° angle at centre O of the circle.
Area of sector of angle θ =\( \frac{θ }{ 360 ^{\degree}} \times πr^2\)
Area of sector OACB =\( \frac{60^{\degree}}{360^{\degree}} \times \frac{22}{7} \times (6)^2\)
=\( \frac{1}{6 }\times \frac{22}{7} \times6 \times 6 = \frac{132}{ 7} cm^2\)
Therefore, the area of the sector of the circle making 60° at the centre of the circle is \(\frac{132}{ 7} cm^2\).
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम