Let OACB be a sector of the circle making 60° angle at centre O of the circle.
Area of sector of angle θ =\( \frac{θ }{ 360 ^{\degree}} \times πr^2\)
Area of sector OACB =\( \frac{60^{\degree}}{360^{\degree}} \times \frac{22}{7} \times (6)^2\)
=\( \frac{1}{6 }\times \frac{22}{7} \times6 \times 6 = \frac{132}{ 7} cm^2\)
Therefore, the area of the sector of the circle making 60° at the centre of the circle is \(\frac{132}{ 7} cm^2\).
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |