Given:
\[
\sec^2 \left( \tan^{-1} 2 \right) + \csc^2 \left( \cot^{-1} 3 \right)
\]
1. First, for \( \sec^2 \left( \tan^{-1} 2 \right) \), we know that:
\[
\tan \theta = 2 \quad \Rightarrow \quad \sec^2 \theta = 1 + \tan^2 \theta = 1 + 2^2 = 5
\]
2. For \( \csc^2 \left( \cot^{-1} 3 \right) \), we know that:
\[
\cot \theta = 3 \quad \Rightarrow \quad \csc^2 \theta = 1 + \cot^2 \theta = 1 + 3^2 = 10
\]
Therefore:
\[
\sec^2 \left( \tan^{-1} 2 \right) + \csc^2 \left( \cot^{-1} 3 \right) = 5 + 10 = 15
\]