Step 1: Split the integral.
The given integral can be rewritten as:
\[
I = \int \frac{x + 3}{x^2(x + 3)} \, dx + \int \frac{x}{x^2(x + 3)} \, dx
\]
Simplifying:
\[
I = \int \frac{1}{x^2} \, dx + \int \frac{x + 3 - x}{x(x + 3)} \, dx
\]
Step 2: Further simplify.
Split the second integral:
\[
\int \frac{x + 3 - x}{x(x + 3)} \, dx = \int \frac{1}{x} \, dx - \int \frac{1}{x + 3} \, dx
\]
Step 3: Evaluate the individual integrals.
1. First term:
\[
\int \frac{1}{x^2} \, dx = -\frac{1}{x}
\]
2. Second term:
\[
\int \frac{1}{x} \, dx = \log |x|
\]
3. Third term:
\[
\int \frac{1}{x + 3} \, dx = \log |x + 3|
\]
Step 4: Combine the results.
Substituting back, we get:
\[
I = -\frac{1}{x} + \frac{1}{3} \log |x| - \frac{1}{3} \log |x + 3| + C
\]
Conclusion:
The final result is:
\[
I = -\frac{1}{x} + \frac{1}{3} \log |x| - \frac{1}{3} \log |x + 3| + C
\]