We are tasked with evaluating the following limit:
\[
\lim_{x \to \infty} \frac{(2x^2 - 3x + 5) \left( 3x - 1 \right)^{x/2}}{(3x^2 + 5x + 4) \sqrt{(3x + 2)^x}}.
\]
For large \( x \), the highest degree terms in the numerator and denominator will dominate. So, we approximate:
\[
(2x^2 - 3x + 5) \sim 2x^2 \quad \text{and} \quad (3x^2 + 5x + 4) \sim 3x^2.
\]
Thus, we approximate the expression as:
\[
\frac{2x^2 \left( 3x - 1 \right)^{x/2}}{3x^2 \sqrt{(3x + 2)^x}}.
\]
Now, simplify the exponential terms:
\[
\left( 3x - 1 \right)^{x/2} \sim (3x)^{x/2} \quad \text{and} \quad \sqrt{(3x + 2)^x} \sim (3x)^{x/2}.
\]
This gives us:
\[
\frac{(3x)^{x/2}}{(3x)^{x/2}} = 1.
\]
So, we are left with:
\[
\frac{2x^2}{3x^2} = \frac{2}{3},
\]
and multiplying by \( \frac{1}{\sqrt{e}} \), we get:
\[
\frac{2}{3\sqrt{e}}.
\]