To ensure continuity at \( x = 0 \), we require:
\[
\lim_{x \to 0^-} f(x) = f(0) = \lim_{x \to 0^+} f(x) = a
\]
Step 1: Left-hand limit ( \( x \to 0^- \) )
\[
\lim_{x \to 0^-} \dfrac{1 - \cos 4x}{x^2}
= \lim_{x \to 0^-} \dfrac{2 \sin^2 2x}{x^2}
= \lim_{x \to 0^-} 4 . \dfrac{\sin^2 2x}{(2x)^2} . 4
= 4 . 4 = 16
\]
\[
\Rightarrow \lim_{x \to 0^-} f(x) = 16
\]
Step 2: Right-hand limit ( \( x \to 0^+ \) )
\[
\lim_{x \to 0^+} \dfrac{\sqrt{x}}{\sqrt{16 + \sqrt{x}} - 4}
\]
Multiply numerator and denominator by the conjugate:
\[
= \lim_{x \to 0^+} \dfrac{\sqrt{x} . (\sqrt{16 + \sqrt{x}} + 4)}{(\sqrt{16 + \sqrt{x}} - 4)(\sqrt{16 + \sqrt{x}} + 4)}
= \lim_{x \to 0^+} \dfrac{\sqrt{x}(\sqrt{16 + \sqrt{x}} + 4)}{(16 + \sqrt{x}) - 16}
\]
\[
= \lim_{x \to 0^+} \dfrac{\sqrt{x}(\sqrt{16 + \sqrt{x}} + 4)}{\sqrt{x}}
= \lim_{x \to 0^+} (\sqrt{16 + \sqrt{x}} + 4)
= \sqrt{16} + 4 = 4 + 4 = 8
\]
\[
\Rightarrow \lim_{x \to 0^+} f(x) = 8
\]
Step 3: Continuity Condition
Since:
\[
\lim_{x \to 0^-} f(x) = 16,
\lim_{x \to 0^+} f(x) = 8
\]
These are not equal, so **f is not continuous** at \( x = 0 \) unless we made a mistake.
But the function is given as continuous, so something went wrong in LHL.
Let’s re-check LHL:
\[
\lim_{x \to 0^-} \dfrac{1 - \cos 4x}{x^2}
= \lim_{x \to 0^-} \dfrac{2 \sin^2 2x}{x^2}
= 2 . \lim_{x \to 0^-} \dfrac{\sin^2 2x}{x^2}
= 2 . \lim_{x \to 0^-} \left( \dfrac{\sin 2x}{x} \right)^2
= 2 . (2)^2 = 8
\]
Conclusion:
\[
\lim_{x \to 0^-} f(x) = 8,
\lim_{x \to 0^+} f(x) = 8 \Rightarrow f(0) = a = 8
\]
% Final Answer
Value of \( a \): \( \boxed{8} \)