If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
We are given the limit: \[ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \]
To solve for \( p \), we first use the fact that: \[ \lim_{x \to 0} \frac{\tan x}{x} = 1 \]
So the limit simplifies to: \[ \lim_{x \to 0} 1^{\frac{1}{x^2}} = 1 \] Thus, \( p = e^{\lim_{x \to 0} \frac{\ln \left( \frac{\tan x}{x} \right)}{x^2}} \). Using the approximation \( \frac{\tan x}{x} \approx 1 + \frac{x^2}{3} \), we find that \( p = e^{\frac{1}{3}} \).
Therefore, the value of \( 96 \ln p \) is approximately 18280.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: