\textbf{Step 1: Recall the Formula for Depression in Freezing Point}
The depression in freezing point ($ \Delta T_f $) is given by:
$$
\Delta T_f = i \cdot K_f \cdot m
$$
where:
$ i $ is the van't Hoff factor,
$ K_f $ is the freezing point depression constant of the solvent ($ K_f = 1.86 \, \text{K kg mol}^{-1} $ for water),
$ m $ is the molality of the solution.
Step 2: Determine Molality ($ m $)
Molality ($ m $) is defined as:
$$
m = \frac{\text{moles of solute}}{\text{mass of solvent (in kg)}}
$$
Given:
Moles of solute ($ \text{CH}_2\text{FCOOH} $): $ 0.25 \, \text{mol} $
Mass of solvent (water): $ 0.5 \, \text{kg} $
Substitute the values:
$$
m = \frac{0.25}{0.5} = 0.5 \, \text{mol kg}^{-1}
$$
Step 3: Use the Depression in Freezing Point Formula
Rearrange the formula to solve for $ i $:
$$
i = \frac{\Delta T_f}{K_f \cdot m}
$$
Given:
$ \Delta T_f = 1^\circ \text{C} $,
$ K_f = 1.86 \, \text{K kg mol}^{-1} $,
$ m = 0.5 \, \text{mol kg}^{-1} $.
Substitute the values:
$$
i = \frac{1}{1.86 \cdot 0.5}
$$
$$
i = \frac{1}{0.93} \approx 1.07
$$
Step 4: Analyze the Options
Option (1): $ 0.93 $
Incorrect — does not match the calculated value.
Option (2): $ 1.07 $
Correct — matches the calculated value.
Option (3): $ 1.25 $
Incorrect — does not match the calculated value.
Option (4): $ 1.50 $
Incorrect — does not match the calculated value.