First, notice that the denominator simplifies to \((x - 2)^2\):
\[
x^2 - 4x + 4 = (x - 2)^2
\]
So the limit becomes:
\[
\lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4) \sin(x - 2)}{(x - 2)^2}
\]
Canceling one \((x - 2)\) from both the numerator and denominator, we get:
\[
\lim_{x \to 2} \frac{(x^2 + 2x + 4) \sin(x - 2)}{x - 2}
\]
Using the standard limit \(\lim_{y \to 0} \frac{\sin y}{y} = 1\), we evaluate the limit as:
\[
(x^2 + 2x + 4) \quad \text{at} \quad x = 2 \quad \Rightarrow \quad 2^2 + 2(2) + 4 = 12
\]
Thus, the limit is:
\[
\lim_{x \to 2} \frac{(x^2 + 2x + 4) \sin(x - 2)}{x - 2} = 12
\]