Question:

Given that \( \mathbf{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \mathbf{b} \), \( |\mathbf{a} + \mathbf{b}| = \sqrt{29} \), \( \mathbf{a} \cdot \mathbf{b} = ? \)

Show Hint

For problems involving cross products and dot products of parallel vectors, the cross product is zero, and the dot product simplifies based on the magnitudes and directions of the vectors.
Updated On: Apr 28, 2025
  • 0
  • 5
  • 10
  • 15
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The equation \( \mathbf{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \mathbf{b} \) implies that \( \mathbf{a} \) and \( \mathbf{b} \) are parallel to the vector \( (2\hat{i} + 3\hat{j} + 4\hat{k}) \). Hence, \( \mathbf{a} = \lambda (2\hat{i} + 3\hat{j} + 4\hat{k}) \) and \( \mathbf{b} = \mu (2\hat{i} + 3\hat{j} + 4\hat{k}) \) for some scalar constants \( \lambda \) and \( \mu \). The condition \( |\mathbf{a} + \mathbf{b}| = \sqrt{29} \) implies: \[ |\lambda (2\hat{i} + 3\hat{j} + 4\hat{k}) + \mu (2\hat{i} + 3\hat{j} + 4\hat{k})| = \sqrt{29} \] This results in \( |\lambda + \mu| \times \sqrt{29} = \sqrt{29} \), which gives \( \lambda + \mu = 1 \). Finally, the dot product \( \mathbf{a} \cdot \mathbf{b} = \lambda \mu |\mathbf{a}|^2 \). Since \( \mathbf{a} \) and \( \mathbf{b} \) are parallel, \( \mathbf{a} \cdot \mathbf{b} = 0 \).
Was this answer helpful?
0
0