The equation \( \mathbf{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \mathbf{b} \) implies that \( \mathbf{a} \) and \( \mathbf{b} \) are parallel to the vector \( (2\hat{i} + 3\hat{j} + 4\hat{k}) \). Hence, \( \mathbf{a} = \lambda (2\hat{i} + 3\hat{j} + 4\hat{k}) \) and \( \mathbf{b} = \mu (2\hat{i} + 3\hat{j} + 4\hat{k}) \) for some scalar constants \( \lambda \) and \( \mu \).
The condition \( |\mathbf{a} + \mathbf{b}| = \sqrt{29} \) implies:
\[
|\lambda (2\hat{i} + 3\hat{j} + 4\hat{k}) + \mu (2\hat{i} + 3\hat{j} + 4\hat{k})| = \sqrt{29}
\]
This results in \( |\lambda + \mu| \times \sqrt{29} = \sqrt{29} \), which gives \( \lambda + \mu = 1 \).
Finally, the dot product \( \mathbf{a} \cdot \mathbf{b} = \lambda \mu |\mathbf{a}|^2 \). Since \( \mathbf{a} \) and \( \mathbf{b} \) are parallel, \( \mathbf{a} \cdot \mathbf{b} = 0 \).