For a first-order reaction, the integrated rate law is given by:
\[
\ln \left( \frac{[A]_0}{[A]_t} \right) = kt
\]
Where:
- \([A]_0 = 1.0 \, \text{mol L}^{-1}\) (initial concentration)
- \([A]_t = 0.25 \, \text{mol L}^{-1}\) (concentration after 60 minutes)
- \(k\) is the rate constant
- \(t = 60 \, \text{minutes} = 1 \, \text{hour} = 60 \, \text{minutes}\)
First, calculate the rate constant \(k\) using the integrated rate law:
\[
\ln \left( \frac{1.0}{0.25} \right) = k \times 60
\]
\[
\ln (4) = k \times 60
\]
\[
0.693 = k \times 60
\]
\[
k = \frac{0.693}{60} = 0.01155 \, \text{mol L}^{-1} \, \text{min}^{-1}
\]
Thus, the initial rate of the reaction is \(0.0115 \, \text{mol L}^{-1} \, \text{min}^{-1}\).