Step 1: Simplify the integrand using a trigonometric identity.
We use the identity
\[
1 + \cos x = 2 \cos^2 \left(\frac{x}{2}\right)
\]
Thus, the integral becomes
\[
\int_0^{\frac{\pi}{2}} \frac{dx}{2 \cos^2 \left(\frac{x}{2}\right)}
\]
\[
= \frac{1}{2} \int_0^{\frac{\pi}{2}} \sec^2 \left(\frac{x}{2}\right) dx
\]
Step 2: Substitute and integrate.
Let \( u = \frac{x}{2} \), hence \( du = \frac{dx}{2} \). The limits change accordingly: when \(x = 0\), \(u = 0\); and when \(x = \frac{\pi}{2}\), \(u = \frac{\pi}{4}\). Therefore, the integral becomes
\[
\frac{1}{2} \times 2 \int_0^{\frac{\pi}{4}} \sec^2 u \, du
\]
\[
= \int_0^{\frac{\pi}{4}} \sec^2 u \, du
\]
Step 3: Evaluate the integral.
The integral of \(\sec^2 u\) is \(\tan u\), so
\[
\int_0^{\frac{\pi}{4}} \sec^2 u \, du = \tan \left(\frac{\pi}{4}\right) - \tan(0)
\]
\[
= 1 - 0 = 1
\]