Step 1: Observe the structure of the integrand.
We notice that
\[
\frac{e^x}{\sqrt{x}}(1+2x)
\]
resembles the derivative of a product involving \( \sqrt{x} \) and \( e^x \).
Step 2: Try differentiation of \( 2\sqrt{x}\, e^x \).
\[
\frac{d}{dx}(2\sqrt{x}\, e^x)
\]
Step 3: Apply the product rule.
\[
= 2\left( \frac{1}{2\sqrt{x}} e^x + \sqrt{x} e^x \right)
\]
\[
= \frac{e^x}{\sqrt{x}} + 2\sqrt{x} e^x
\]
Step 4: Factor out \( \dfrac{e^x}{\sqrt{x}} \).
\[
= \frac{e^x}{\sqrt{x}}(1 + 2x)
\]
Step 5: Conclusion.
Thus,
\[
\int \frac{e^x}{\sqrt{x}}(1+2x)\,dx = 2\sqrt{x}\, e^x + c
\]