1. The sum is:
\( S_n = 2^k + 4^k + 6^k + \cdots + (2n)^k \).
Factor out \( 2^k \):
\( S_n = 2^k \left[ 1^k + 2^k + 3^k + \cdots + n^k \right] \).
2. The term inside the brackets is the \( k \)-th power sum:
\[ \sum_{r=1}^n r^k \sim \frac{n^{k+1}}{k+1}, \text{ as } n \to \infty. \]
3. Substitute:
\( S_n \sim 2^k \cdot \frac{n^{k+1}}{k+1}. \)
4. Divide \( S_n \) by \( n^{k+1} \):
\[ \frac{S_n}{n^{k+1}} = \frac{2^k}{k+1}. \]
5. Taking the limit as \( n \to \infty \):
\[ \lim_{n \to \infty} \frac{1}{n^{k+1}} \left[ 2^k + 4^k + 6^k + \cdots + (2n)^k \right] = \frac{2^k}{k+1}. \]
Thus, the correct answer is \( \frac{2^k}{k+1} \).