Question:

Evaluate
  1. \(\frac{ (8^{−1}× 5^3)}{2^{−4}} \)
  2. \((5^{−1}× 2^{−1})×6^{−1}\)

Updated On: Dec 2, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) \(\frac{(8^{−1} × 5^3) }{ 2^{−4}}\)
Since, \(a^{−m} = \frac{1}{a^m},a^m÷a^n = a^{m−n}\)
\(\frac{(8^{−1} × 5^3) }{ 2^{−4}}\)

\(= \frac{(2^4 × 5^3)}{8^1}\)      [Since \(a^{−m} = \frac{1}{a^m}\)]

\(= \frac{(2^4 × 5^3)}{2^3}\)
\(= 2^{4 − 3} × 5^3 \)     [a÷ a= am − n]
= 2 × 125
= 250


(ii) \((5^{−1}× 2^{−1}) × 6^{−1}\)
Since,\( a^m × b^m = (ab)^m, a^{-m} = \frac{1}{a^m}\)
\((5^{−1} × 2^{−1}) × 6^{−1}\)
\(=10^{−1}× 6^{−1}\)
\(= (10 × 6)^{−1}  \)                  \(  [∵a^m × b^m = (ab)^m]\)
\(= (60)^{−1} = \frac{1}{60}   \)        \([∵ a^{-m} = \frac{1}{a^m}]\)

Was this answer helpful?
0
0