Question:

Simplify and express the result in power notation with positive exponent.
  1. (−4) 5 ÷ (−4) 8 
  2. \(\left(\frac{1 }{ 2^3}\right)\) 2 
  3. (−3) 4 × (\(\frac{5}{3}\)) 4
  4. (3 -7 ÷ 3 -10) × 3 -5 
  5. 2 -3 × (−7) -3

Updated On: Dec 1, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) (−4)÷ (−4)8
Since \(\frac{a^m}{a^n}\)= am − n 
(−4)÷ (−4)\(\frac{(−4)^5}{(−4)^8}\)= (−4)5−8
(−4)−3
\(= \frac{1}{(−4)^3}\)


(ii) \(\left(\frac{1}{2^3}\right)^2\)
Since, (am)= amn
\(⇒ \left(\frac{1}{2^3}\right)^2\)
\(= \frac{1}{2^6}\)


(iii) (−3)4 \(× \left(\frac{5}{3}\right)^4\)
We know that a× b=(ab)m and (\(\frac{a}{b}\))m = \(\frac{a^m}{b^m}\) where a & b are non-zero integers and m is an integer
\(⇒\) (−3)4 \(× \left(\frac{5}{3}\right)^4\)

\(⇒ (−1 × 3)^4 × \frac{5^4}{3^4}\)

\(⇒\) (−1)× 54
= 54      [∵(−1)= 1]


(iv) (3−7 ÷ 3−10) × 3−5
We know.  \(\frac{a^m}{a^n} =\) am − n and a× a= am + n
(3−7 ÷ 3−10) × 3−5 = (3−7−(−10)) × 3−5
= (3−7 + 10) × 3−5 = 3× (3−5)
= 33 + (−5)
= 3−2 =\( \frac{1}{3^2}\)


(v) 2−3 × (−7)−3
We know that, a× b= (ab)m
2−3 × (−7)−3
= [2 × (−7)]−3
= (−14)−3
\(= \frac{1}{(-14)^3}\)   [Since a−m = 1/am]

Was this answer helpful?
0
0