(i) (−4)5 ÷ (−4)8
Since \(\frac{a^m}{a^n}\)= am − n
(−4)5 ÷ (−4)8 = \(\frac{(−4)^5}{(−4)^8}\)= (−4)5−8
(−4)−3
\(= \frac{1}{(−4)^3}\)
(ii) \(\left(\frac{1}{2^3}\right)^2\)
Since, (am)n = amn
\(⇒ \left(\frac{1}{2^3}\right)^2\)
\(= \frac{1}{2^6}\)
(iii) (−3)4 \(× \left(\frac{5}{3}\right)^4\)
We know that am × bm =(ab)m and (\(\frac{a}{b}\))m = \(\frac{a^m}{b^m}\) where a & b are non-zero integers and m is an integer
\(⇒\) (−3)4 \(× \left(\frac{5}{3}\right)^4\)
\(⇒ (−1 × 3)^4 × \frac{5^4}{3^4}\)
\(⇒\) (−1)4 × 54
= 54 [∵(−1)4 = 1]
(iv) (3−7 ÷ 3−10) × 3−5
We know. \(\frac{a^m}{a^n} =\) am − n and am × an = am + n
(3−7 ÷ 3−10) × 3−5 = (3−7−(−10)) × 3−5
= (3−7 + 10) × 3−5 = 33 × (3−5)
= 33 + (−5)
= 3−2 =\( \frac{1}{3^2}\)
(v) 2−3 × (−7)−3
We know that, am × bm = (ab)m
2−3 × (−7)−3
= [2 × (−7)]−3
= (−14)−3
\(= \frac{1}{(-14)^3}\) [Since a−m = 1/am]