(i) (30 × 4−1) × 22
a0 = 1 and a−m = \(\frac{1}{a^m}\)
(30 × 4−1) × 22
= (1 + \(\frac{1}{4}\)) × 22
= \([\frac{(4 + 1)}{4}] ×\) 22
\(= (\frac{5}{4}) ×\) 22
= \(\frac{5}{2}\)2 × 22 [Since 4 = 2 × 2 = 22]
= 5
(ii) (2−1 × 4−1) ÷ 2−2
(am)n = amn, a−m = \(\frac{1}{a^m}\)
(2−1 × 4−1) ÷ 2−2
= [2−1 × {(2)2}−1] ÷ 2−2 [Since 4 = 2 × 2 = 22]
= (2−1 × 2−2) ÷ 2−2 [∵(am)n = amn]
= 2−3 ÷ 2−2 [∵am × an = am + n]
= 2−3−(−2) [∵am ÷ an = am−n]
= 2−3 + 2
= 2−1
= \(\frac{1}{2}\) [∵a−m = \(\frac{1}{a^m}\)]
(iii) \((\frac{1}{2})^{−2} + (\frac{1}{3})^{−2} + (\frac{1}{4})^{−2}\)
\((\frac{a}{b})^{−m} = (\frac{b}{a})^m\)
\((\frac{1}{2})^{−2} + (\frac{1}{3})^{−2} + (\frac{1}{4})^{−2}\)
\(= (\frac{2}{1})^2 + (\frac{3}{1})^2 + (\frac{4}{1})^2\)
= (2)2 + (3)2 + (4)2
= 4 + 9 + 16 = 29
(iv) (3−1 +4−1 + 5−1)0
a0 = 1 and a−m = \(\frac{1}{a^m}\)
(3−1 + 4−1 + 5−1)0
\(= (\frac{1}{3} + \frac{1}{4} + \frac{1}{5})^0\) [Since a−m = \(\frac{1}{a^m}\)]
= 1 [Since a0 = 1]
(v) {\((\frac{−2}{3})^{−2}\)}2
a−m = \(\frac{1}{a^m}\) and \((\frac{a}{b})^m = \frac{a^m}{b^m}\)
{\((\frac{−2}{3})^{−2}\)}2
= {\((\frac{3}{−2})^2\)}2 [Since a−m = \(\frac{1}{a^m}\)]
={\(\frac{3^2}{(−2)^2}\)}2 [Since \((\frac{a}{b})^m = \frac{a^m}{b^m}\)]
\(=(\frac{9}{4})^2 = \frac{81}{16}\)