Question:

Find the value of
  1. (3× 4−1) × 2
  2.  (2−1 × 4−1) ÷ 2−2
  3.  (\(\frac{1}{2}\))−2 + (\(\frac{1}{3}\))−2 + (\(\frac{1}{4}\))−2
  4.  (3−1 +4−1 + 5−1)0
  5.  {(\(\frac{−2}{3}\))−2}2

Updated On: Dec 1, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) (3× 4−1) × 22
a0 = 1 and a−m = \(\frac{1}{a^m}\)
(3× 4−1) × 22
= (1 + \(\frac{1}{4}\)) × 22

\([\frac{(4 + 1)}{4}] ×\) 22

\(= (\frac{5}{4}) ×\) 22

\(\frac{5}{2}\)× 22     [Since 4 = 2 × 2 = 22]
= 5


(ii) (2−1 × 4−1) ÷ 2−2
(am)= amn, a−m = \(\frac{1}{a^m}\)
(2−1 × 4−1) ÷ 2−2
= [2−1 × {(2)2}−1] ÷ 2−2   [Since 4 = 2 × 2 = 22]
= (2−1 × 2−2) ÷ 2−2    [∵(am)= amn]
= 2−3 ÷ 2−2                  [∵a× a= am + n]
= 2−3−(−2)                     [∵a÷ a= am−n]
= 2−3 + 2    
= 2−1
\(\frac{1}{2}\)      [∵a−m \(\frac{1}{a^m}\)]


(iii) \((\frac{1}{2})^{−2} + (\frac{1}{3})^{−2} + (\frac{1}{4})^{−2}\)

\((\frac{a}{b})^{−m} = (\frac{b}{a})^m\)

\((\frac{1}{2})^{−2} + (\frac{1}{3})^{−2} + (\frac{1}{4})^{−2}\)

\(= (\frac{2}{1})^2 + (\frac{3}{1})^2 + (\frac{4}{1})^2\)

= (2)+ (3)2 + (4)2
= 4 + 9 + 16 = 29


(iv) (3−1 +4−1 + 5−1)0
a0 = 1 and a−m = \(\frac{1}{a^m}\)
(3−1 + 4−1 + 5−1)0
\(= (\frac{1}{3} + \frac{1}{4} + \frac{1}{5})^0\)    [Since a−m = \(\frac{1}{a^m}\)]
= 1 [Since a0 = 1]


(v) {\((\frac{−2}{3})^{−2}\)}2
a−m = \(\frac{1}{a^m}\)  and \((\frac{a}{b})^m = \frac{a^m}{b^m}\)

{\((\frac{−2}{3})^{−2}\)}2

= {\((\frac{3}{−2})^2\)}2 [Since a−m \(\frac{1}{a^m}\)]

={\(\frac{3^2}{(−2)^2}\)}2 [Since \((\frac{a}{b})^m = \frac{a^m}{b^m}\)]

\(=(\frac{9}{4})^2 = \frac{81}{16}\)

Was this answer helpful?
0
0